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STATISTICAL MODELS FOR ESTIMATING DAILY 
STREAMFLOW IN MICHIGAN

by D.J. Holtschlag and Habib Salehi 

ABSTRACT

Statistical models for estimating daily streamflow were analyzed for 25 pairs of 
streamflow-gaging stations in Michigan. Stations were paired by randomly choosing a 
station operated in 1989 at which 10 or more years of continuous flow data had been 
collected and at which flow is virtually unregulated; a nearby station was chosen where 
flow characteristics are similar. Streamflow data from the 25 randomly selected stations 
were used as the response variables; streamflow data at the nearby stations were used to 
generate a set of explanatory variables.

Ordinary-least squares regression (OLSR) equations, autoregressive integrated 
moving-average (ARIMA) equations, and transfer function-noise (TFN) equations were 
developed to estimate the log transform of flow for the 25 randomly selected stations. 
The precision of each type of equation was evaluated on the basis of the standard 
deviation of the estimation errors. OLSR equations produce one set of estimation errors; 
ARIMA and TFN models each produce / sets of estimation errors corresponding to the 
forecast lead. The lead-/ forecast is the estimate of flow / days ahead of the most recent 
streamflow used as a response variable in the estimation. In this analysis, the standard 
deviation of lead / ARIMA and TFN forecast errors were generally lower than the 
standard deviation of OLSR errors for / < 2 days and / < 9 days, respectively.

Composite estimates were computed as a weighted average of forecasts based on 
TFN equations and backcasts (forecasts of the reverse-ordered series) based on ARIMA 
equations. The standard deviation of composite errors varied throughout the length of 
the estimation interval and generally was at maximum near the center of the interval. 
For comparison with OLSR errors, the mean standard deviation of composite errors were 
computed for intervals of length 1 to 40 days. The mean standard deviation of length / 
composite errors were generally less than the standard deviation of the OLSR errors for / 
< 32 days. In addition, the composite estimates ensure a gradual transition between 
periods of estimated and measured flows.

Model performance among stations of differing model error magnitudes were 
compared by computing ratios of the mean standard deviation of the length / composite 
errors to the standard deviation of OLSR errors. The mean error ratio for the set of 25 
selected stations was less than 1 for intervals / < 32 days. Considering the frequency 
characteristics of the length of intervals of estimated record in Michigan, the effective 
mean error ratio for intervals < 30 days was 0.52. Thus, for intervals of estimation of 1 
month or less, the error of the composite estimate is substantially lower than error of the 
OLSR estimate.



INTRODUCTION

The U.S. Geological Survey (USGS) operates hydrologic data-collection stations 

nationwide to provide all levels of government, the private sector, and the general public 
with water resources information. Daily mean streamflow is a major component of this 

data-collection program. In the United States in 1989, streamflow records were published 
for 7,239 continuous record gaging stations, including records for 140 stations in 

Michigan (Condes de la Torre, 1989).
Daily mean streamflow is computed on the basis of hourly or more frequent 

measurements of water-surface elevation (stage) and a rating curve that defines the 
relation between stage and discharge for a particular stream. The rating curve is 

developed from periodic measurements of stage and discharge obtained when flow is not 
affected by variable backwater. The backwater effect is the reduction in flow expected at 
a specific stage that is attributable to an obstruction in the channel. Periodic measure 
ments are used as a basis for adjusting the rating curve to account for minor changes in 

the hydraulic characteristics of a stream channel.

At many gaging stations, parts of the flow record are estimated each year because 

of lost stage record or variable backwater. Record is lost generally because of malfunction 

of sensing or recording equipment. In Michigan, channel ice is a major cause of variable 
backwater. The accuracy of the estimates affects the utility of the flow records and the 
operation of streamflow gaging stations.

Estimates of daily flow can be computed by use of ordinary least-squares 

regression (OLSR) equations or by use of hydrologic flow routing models (Scott and 

Moss, 1986, p. 298). OLSR equations are developed from recorded streamflows at a 

station where estimates are needed; these flows are referred to as the dependent or 
response variable. Flow data from a nearby station are used as a source of independent or 

explanatory variables. OLSR equations commonly include two or more lagged series of - 
flows from the nearby station as explanatory variables. Lagged series are created by 
shifting flows ahead or behind their measured time of occurrence by one or more days.

OLSR models are based on the assumption of independent observations; however, 
consecutive daily streamflows are generally autocorrelated. This discrepancy between the 
OLSR model and data characteristics increases the difficulty of identifying the explana 

tory streamflow lags essential for inclusion in the regression equation. In addition, the 
transition between periods of regression estimates and measured values is seldom smooth. 

Results of streamflow estimation in Michigan (Holtschlag, 1985, p. 14) indicate that large 

errors associated with OLSR estimates generally limit potential use of the equations.



Errors in hydrologic flow routing models are similar to errors found in OLSR models 
(Scott and Moss, 1986, p. 304).

Alternatively, stochastic models describe the relation between input and output in 
dynamic systems. For a univariate time series, the input, which can be described by a 

white noise series, can be related to the output, or the observed time series, by an 
autoregressive integrated moving-average (ARIMA) equation. Bivariate input systems, 

consisting of a white-noise series and an explanatory series, can be related to a single 

output series by a transfer function-noise (TFN) equation.
Because stochastic-model assumptions are more consistent with streamflow-data 

characteristics than OLSR-model assumptions, stochastic equations are more likely to 

result in adequate estimates than are OLSR equations. In the past, difficulties in the 
identification and estimation of stochastic equations have limited their use. Recently the 
AUTOBOX 1 program (Automatic Forecasting Systems, 1988), a computer based expert 

system, has been developed to automate the development of ARIMA and TFN equations. 
Because of its ease of use and its potential for widespread application, the AUTOBOX 

program was used in this evaluation.

This study was conducted in cooperation with the Michigan Department of 

Natural Resources to help maintain the accuracy of streamflow records in a cost effective 
manner.

Purpose and Scope

The purpose of this report is to discuss the feasibility of using stochastic models for 

estimating daily mean streamflow in Michigan. Feasibility was evaluated on the basis of 

a comparison of the relative accuracy of estimates obtained from OLSR equations and 
estimates determined from stochastic equations for 25 randomly selected streamflow- 
gaging stations in Michigan. The effect of data transformations and the effect of inclusion 
of explicit trend and seasonal components in the equations also was assessed.

of trade names in this report is for identification only and does not constitute 

endorsement by the U.S. Geological Survey.



Streamflow data

Twenty five streamflow-gaging stations (table 1, figs. 1 and 2) were randomly 
selected from U.S. Geological Survey stations operated in Michigan; each had been in 
continuous operation for 10 or more years through water year 1989. The stations were 
restricted to streams in which flow was virtually unregulated. In this report, flow at the 
randomly selected station is referred to as the response variable; for brevity, the randomly 
selected gaging station is referred to as the response station. For each response station, a 
second station in close proximity to the first was selected to aid in the estimation of the 
response variable. These nearby (explanatory) stations were selected from stations 
typically used by USGS personnel in Michigan for comparison in estimating flow. Flow 
data from the nearby stations was used to generate a set of explanatory variables.

Daily Streamflow data for 5 years (water years 1985 89) were used in the analysis. 
Data from the first 4 years were used for model calibration; data from the fifth year were 
used for model verification. Periods of estimated record, described in the annual water 
data report (U.S. Geological Survey, 1986-1990) were documented. These data describe 
1,012 periods of estimated record with a mean duration of 14 days per period. Thus, 
about 15 percent of the daily Streamflow was estimated.

A high percentage of the periods of estimated record were of short duration (fig. 
3); about 65 percent of the periods of estimated record were 1 week or shorter. Further 
analysis of estimated record characteristics indicated that the distribution of estimated 
record varied seasonally and peaked in January and February (fig. 4). The peak indicates 
that the probability of variable backwater and equipment failures is greatest in winter.



Table 1. Selected U.S Geological Survey streamflow-gaging stations in Michigan

[Map number refers to figs. 1 and 2. Flow estimates at the response station can 
be based, at least in part, on flow from the corresponding explanatory station)

Map 
num 
ber

1-R

2-R

3-R

4-R

5-R

6-R

7-R

8-R

9-R

10-R

11-R

12-R

13-R

14-R

15-R

16-R

17-R

18-R

19-R

20-R

Response station

Station Stream 
number name

04040500

04056500

04059500

04061500

04096400

04096515

04102500

04105000

04111500

04113000

04114500

04115000

04122100

04122200

04122500

04127918

04128000

04135500

04146000

04160570

Sturgeon River
near Sidnaw

Manistique River
near Manistique

Ford River
near Hyde

Paint River
at Crystal Falls

St. Joseph River
near Burlington

South Branch Hog
Creek near Alien

Paw Paw River
at Riverside

Battle Creek
at Battle Creek

Deer Creek
near Dansville

Grand River
at Lansing

Looking Glass River
near Eagle

Maple River
at Maple Rapids

Bear Creek
near Muskegon

White River
near Whitehall

Pere Marquette River
at Scottville

Pine River
near Rudyard

Sturgeon River
near Wolverine

Au Sable River
at Grayling

Farmers Creek
near Lapeer

North Branch Belle
River at Imlay City

Map 
num 
ber

1-E

2-E

3-E

4-E

5-E

6-E

7-E

8-E

9-E

10-E

11-E

12-E

13-E

14-E

15-E

16-E

17-E

18-E

19-E

20-E

Explanatory station

Station Stream 
number name

04043050

04045500

04059000

04033000

04096600

04096900

04101500

04105500

04111379

04109000

04116000

04117500

04121900

04121500

04121300

04057510

04127800

04135700

04146063

04160600

Trap Rock River
near Lake Linden

Tahquamenon River near
Tahquamenon Paradise

Escanaba River
at Cornell

Middle Branch Ontona-
gon River near Paulding
Coldwater River

near Hodunk
Nottawa Creek

near Athens
St. Joseph River

at Niles
Kalamazoo River

near Battle Creek
Red Cedar River

near Williamston
Grand River

at Jackson
Grand River

at Ionia
Thornapple River

near Hastings
Little Muskegon River

near Morley
Muskegon River

at Evart
Clam River

at Vogel Center
Sturgeon River

near Nahma Junction
Jordan River

near East Jordan
South Branch Au Sable

River near Luzerne
South Branch Flint River

near Columbiaville
Belle River

at Memphis



Table 1. Selected U.S. Geological Survey streamflow-gaging stations 
in Michigan Continued

Map 
num 
ber

Response station

Station 
number

Stream 
name

Explanatory station 
Map
num- Station Stream 
ber number name

21-R 04163400

22-R 04164000

23-R 04164100

24-R 04164500

25-R 04166000

Plum Brook
at Utica 

Clinton River
near Fraser 

East Pond Creek
at Romeo

North Branch Clinton 
River near Mount Clemens 

River Rouge
at Birmingham

21-E 04161100

22-E 04161540

23-E 04161580

24-E 04168000

25-E 04166100

Galloway Creek
near Auburn Heights 

Paint Creek
at Rochester 

Stony Creek
near Romeo 

Lower River Rouge
at Inkster 

River Rouge
at Southfield



48*

2-R
EXPLANATION

STREAMFLOW-GAGING STATION Location 
and number. The suffix V R* indicates 
response station; *E* indicates 
explanatory station

85*

h
0 20 40 KILOMETERS

Base from U.S. Geological Survey 
1:500.000 map

Figure 1. Locations of selected streamflow-gaging stations in the Upper Peninsula of 
Michigan. (See Table 1 for U.S. Geological Survey station names and 
numbers.)
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EXPLANATION
21-R

A STREAMFLOW-GAGING STATION Location 
and number. The suffix *R'X indicates 
response station; *E'" indicates 
explanatory station

42°

I.AKE 
ERIE

Base from U.S. Geological Survey 
1:500.000 map

20 40 MILES

1 T I
0 20 40 KHX>METERS

Figure 2. Locations of selected streamflow-gaging stations in the Lower Peninsula of 
Michigan. (See Table 1 for U.S. Geological Survey station names and 
numbers.)
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STATISTICAL MODELS FOR ESTIMATING DAILY STREAMFLOW

The OLSR models and the stochastic models discussed in this report are linear 

statistical models with additive error components. Both classes of models are based on 

the assumption that the variability of flow values can be disaggregated as

yt =Mt + st +zt()+et> w
where

y, is the daily mean streamflow at time t (in this analysis, upper-case letters X, 

and y, indicate streamflows in cubic feet per second, at the explanatory and 
response sites; lower-case letters x, and y, indicate a transformed metric);

M, is the deterministic trend component of y+,

S, is the seasonal component of j/,;
z, is a p-dimensional row vector that includes a value of 1 as the first element and 

transformed streamflows as additional elements (z, may include values of x,_, 
for small integers / and values of y., for small positive whole numbers /);

ft is a p-dimensional column vector of coefficients relating streamflows in z, to j/,; 

and
e, is the model-error component generally assumed to be normally distributed and

independent with mean zero and variance a*, e, ~ jKT(0,Oe)- 
OLSR models and stochastic models differ fundamentally in the variates that can 
potentially be included in the vector z, the method for identifying appropriate variates 

for inclusion, and the technique for estimating the coefficient vector, ft. The form of 

equation 1 is not typically used for the development of stochastic equations, but it can be 

derived by algebraic manipulation from a more parsimonious form to facilitate 
estimation.

Premodeling Considerations

Statistical models are developed to describe natural phenomena in a simple and 

useful form. Simplicity is commonly measured by the number of parameters in the esti 

mating equation; usefulness, by the accuracy of the estimates. The nonlinear data trans 
formations and techniques for trend and seasonal estimation discussed in the following 
sections aid in the development of statistical models.

10



Data Transformations

Nonlinear data transformations are often applied so that the equation relating 
response and explanatory variables is parsimonious (Box and Draper, 1987, p. 288) and so 
that model variance is homoscedastic. The effect of such transformations is generally to 

expand the data scale in one part of the range and to contract it in another. The choice 
of data transformation is related to the distribution of the response and explanatory 
variates and to the relation between the two variates.

The frequency distribution of daily mean streamflow data (referred to as "daily 
streamflow data" hereafter) is typically skewed to the right (fig. 5). A natural logarithm 

(log) transformation, which contracts the high end of the range, is commonly applied to 
facilitate model development (Riggs, 1968, p. 10); however, the log transformation

corresponds to only one value in a family of power transformations, /T;x , Ty. Maximum
V V

likelihood methods for choosing the power-transformation parameters A x and Ay are 
described by Box and Draper (1987, p. 289).

1,400

1,000 2,000 3,000 4,000 

STREAMFLOW, IN CUBIC FEET PER SECOND

5.000

Figure 5. Histogram of daily streamflows of Sturgeon River near Sidnaw, 
water years 1985-89.
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The avas transformation (Statistical Sciences, 1990, chap. 5, p. 14) is a generaliza 
tion of the power transformation. The avas transformation is composed of a pair of 
nonlinear-monotonic functions, / and g, chosen so that the model /(7t) = 9 (A) 

results in an additive, homoscedastic model error component. Although the avas 

transformations varied among station pairs, log- and avas-transformed streamflows tended 

to differ primarily by a constant (fig. 6). The adequacy of the log transformation was 
assessed by comparing the accuracy of the OLSR equations based on log transformation 
with the accuracy of equations based on avas transformation.

04
H 
W
5
Q 
W

en 
Z

s

E

-2

-4

TRAP ROCK RIVER NEAR 
LAKE LINDEN.

STURGEON RIVER 
NEAR SIDNAW

- - - LOG (Y) - MEAN (LOG (Y))
        LOG (X)- MEAN (LOG(X))
    AVAS(Y)
    AVAS(X)

10 50 100 500 1,000 

STREAMFLOW, IN CUBIC FEET PER SECOND

5,000

Figure 6. Relation between streamflows and the log and avas transformations
of streamflows, Sturgeon River near Sidnaw and Trap Rock River near 
Lake Linden.
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Trend and Seasonal Components

In time-series modeling, the trend and seasonal components in equation 1 are 

commonly approximated by use of a deterministic function of time and are subtracted 
from the streamflows before the dependence on the explanatory series is modeled. The 

trend is typically approximated by a low order polynomial equation, whereas the 

seasonal component is approximated by a Fourier series (Box and Jenkins, 1976, p. 301). 
Because of the dynamic characteristics of streamflow data, however, the true significance 

level of parameters describing the trend or seasonality are generally unknown.
In this study, trend components were generally not evident by inspection of the 

streamflow series. For completeness, the possibility of a linear-trend component was 
included in the development of the stochastic equations. Residuals from all model were 

inspected for trends.
A prominent seasonal component was apparent in all of the streamflow series (fig. 

7). Because use of seasonal models containing parameters with uncertain statistical 

significance is undesirable, seasonal components were described by means of a variable 
span moving average (VSMA) vector (Statistical Sciences, 1990, chap. 5, p. 45). The

100 -

10

TRAP ROCK RIVER NEAR 
LAKE LINDEN

STURGEON RIVER 
NEAR SFDNAW

MEASURED FLOW 
ESTIMATED FLOW

1985 1986 1987 1988 1989

Figure 7. Streamflow of Sturgeon River near Sidnaw and Trap Rock River near 
Lake Linden, water years 1985-89.
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VSMA vector is computed from estimates of the log of daily streamflow based on the 
average of four log-transformed flow values for each day of the year during the calibration 
period. A moving average of adjacent daily averages was used to estimate a VSMA 

vector through the 365 daily values. The span of the moving average changed with the 
local curvature and the variability of residuals about the VSMA vector. Smoothing 

parameters, used to control the width of the span, were based on local cross validation 

analysis. VSMA vectors were constrained to maintain a 365 day period.
Scatter plots (fig. 8) showed that the VSMA vectors were consistent with the 

major features of the apparent seasonal variability of daily averages and that VSMA 

vectors for paired stations were similar in shape. OLSR and stochastic models were 
developed with and without seasonal components estimated by the vectors to assess the 
need for an explicit seasonal component.

ffl
D 
O

TRAP ROCK RIVER NEAR 
LAKE LINDEN

jyW^M

I I

     MEAN

SMOOTH

| -
O

I I I I I I I

STURGEON RIVER 
NEAR SIDNAW

I I I I I I
OCT NOV DEC JAN FEE MAR APR MAY JUNE JULY AUG SEPT

Figure 8. Estimated seasonal components of streamflow, Sturgeon River near Sidnaw 
and Trap Rock River near Lake Linden.
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Ordinary  Least  Squares Regression Model

OLSR models have been used extensively in hydrology because they are objective 
and easy to apply, they produce indices of accuracy, and they are generally accepted as a 
tool for estimation. In a nationwide investigation of the cost-effectiveness of the 
U.S. Geological Survey streamflow  gaging program (Fontaine and others, 1984, p. 13), 
OLSR models were evaluated as an alternative to field data collection for determining 
daily streamflow; however, because of the inaccuracies of the resulting streamflow 
estimates, few gaging-station records were reproduced with sufficient accuracy to be 
considered viable alternatives to measured streamflow data (Scott and Moss, 1986, p. 
303). The formulation and assumptions associated with the OLSR model are discussed in 
the following section.

Formulation 

The OLSR model can be written without trend or seasonal components as

where
y, is the response variable at time t\
x, is the value of a p  dimensional row vector at time t (The vector contains 1 as its 

first element and explanatory streamflows from an interval of width 12 days and
includes z*+4»z*.j_3»'"»ztj7 for each y,. This interval was chosen to include all

(l> ( ff\ (l> ( ff\ 
significant cross-correlations between /\ x> p< y, and /\ x> p< x. for the 25 paired

fxV^J & "xV^J *
<¥, / D\

stations. The rational polynomial Ax ) p( is the estimated linear filter that trans-
forms x, to a white-noise series a, (Box and Jenkins, 1976, p. 380). Here, B is

the backshift operator such that BPx, = x. . Values of x, are assumed to bet t m t
measured without error in the OLSR model.);

ft is a column vector of coefficients, of the same length as x,, relating streamflow at 
a response site to streamflow at the explanatory site (an intercept term is 
included as the first element), and

e, is the OLSR error at time t where e, ~ J/I(Q t aQ. (This form of the error
component implies that the error vector t  \e e e     e ]' has the property

1 i 2 3 n-
that £(ee') = a\J^ where J£ is an nx n  dimensional identity matrix and S is 
the expected value operator; the prime symbol associated with a matrix indicates 
the transposition operation.

15



OLSR estimates of the coefficient vector ft are computed as

P=(X'XY*X'y, (3) 
where X is an n x p matrix of transformed explanatory streamflows and y is an

n dimensional column vector of transformed response streamflows (Beck and Arnold, 

1977, p. 235). The number n corresponds to the number of days of streamflow values
___ A

used in the estimation. The covariance of the estimated coefficient vector ft is

Cov(/7) = (X'X)-lX'£(ee')X(X'X)-1 . (4)
_ » A

For uncorrelated errors, such that £(ee') = a\J^ ft is the minimum variance estimator 

of ft, and the covariance of ft is

Cov(ft) = at(X'X)->; (5) 

however, if the residuals are correlated, then the OLSR estimate of ft is inefficient (Beck

and Arnold, 1977, p. 239), and the Cov(ft) is difficult to assess.

The OLSR estimate of transformed streamflow for time t is computed as
A

y, = x* ft. In addition to the point estimate, probability limits can be used to describe a 

random interval that has a probability of 1 a of containing y,} where a is a specified 
significance level. For large numbers of measurements used in estimation, the probability

interval for a new observation based on the OLSR equation and the assumption of 

independent, constant-variance errors can be computed as

where M / 2 is the upper 100(o/2) th percentile of a normal distribution (Johnson and 
Wickern, 1982, p. 311). A sample estimate of cre is referred to as the root mean square 
of the OLSR estimation errors (RMSE). In general, the width of the probability interval

increases as the RMSE and the distance between x, and the mean, x, (\\Xr-x||), increase; 

however, as the number of measurements used in the estimation increases, the interval 

width tends to become nearly constant over a wide range of streamflow magnitudes.
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Implementation

OLSR equations were developed by selecting an appropriate subset of explanatory 
streamflow variates from a full equation. The full equation included an intercept term 

and 12 positive and negative lags of streamflow from the nearby station (xfiA>xt   QJ---J 
x,~) as explanatory variates for each value of the response variable (y.) at time t 

The RMSE of the full equation was used to provide an unbiased estimate of ae for the 
true equation, aef. The true equation is defined here as the regression equation contain 
ing the appropriate subset of explanatory variates.

The full equation tended to include explanatory variables that had little computed 

statistical significance. More parsimonious equations, which included subsets of the 

explanatory series from the full equation, were identified by means of the Cp statistic 

(Daniel and Wood, 1980, p. 86),

(7)

where RSS P is the residual sum of squares for an OLSR model containing an intercept 
term and p-1 explanatory variables. Results for equations with small bias tend to 

cluster about the line Cp = p.

As a further means of excluding unnecessary parameters, final selection criteria for 

the OLSR equations included the requirement that all parameters, except the intercept, 

have a individual significance level (?  value) of 5 percent or less. In addition, a 
minimum increase of 0.001 in the coefficient of determination (I2) also was required to 

increase the number of parameters in an estimation equation.

OLSR equations developed from log-transformed streamflows (table 2) contain an 
average of 4.3 explanatory variates. The most commonly included lags of the explanatory 

series were at £+4 (60 percent), t (100 percent), t-l (56 percent), and t-7 (64 percent) 

relative to the streamflow response at time t. Selection of explanatory series at times t 
and t  I indicate that the explanatory and response series were virtually contempora 
neous. The extreme lags were likely included because they were the least redundant 

among available series after inclusion of the explanatory series near time t Inclusion of 

even more extreme explanatory lags in the full equation is unlikely to improve estimating 

equations substantially because of the general decrease in cross  correlation with 
increasing lag.
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Application

Estimation of daily streamflow by means of the OLSR equation is illustrated with 
log-transformed streamflow from station 04040500 as the response variable and log- 

transformed flow from station 04043050 as the explanatory variable. On the basis of the 
Cp plot (fig. 9) a six-parameter and a seven-parameter model were evaluated. Individual 
?  values of all explanatory series in the six-parameter model were less than 0.0001; 
? values of all explanatory series in the seven-parameter model were less than 0.002. The 
increase in I2 from the six-parameter model (0.7489) to the seven-parameter model 

(0.7497), however, was less than the specified 0.001. Therefore, the six-parameter model 
was selected.

14

12 -

10

PARAMETER EXPLANATORY 
NUMBER VARIABLE AT ' 

t - 6 
t - 5 
t - 4 
t - 3 
t- 2 
t - 1 
t 
t + :l

VALUE OK Cp STATISTIC 3578B 
AND 24678B INDICATE 
COMPETING MODELS

10 12 14

NUMBER OF PARAMETERS

Figure 9. Cp for alternative ordinary least squares regression equations for
estimating streamflow at Sturgeon River near Sidnaw on the basis of 
streamflow at Trap Rock River near Lake Linden.
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The OLSR estimate of the log of streamflow for October 1, 1988, based on the 
selected equation and log-transformed streamflow at station 04043050 from September 26 

through October 4, 1988, is

= x p=[l log(35) log(21) log(22) log(25) log(21)J "0.145761 = 4.2472.
0.11542 
0.50674 
0.33624 
0.19120 
U6210

The exponentiated estimate, exp(y), is 69.9 ft 3/s.
The 95 percent probability interval obtained from the calibration data is

4.2472 ± 1.96 Jo.52412 2(l -f 0.0016716) = [3.2191, 5.2753],

which corresponds to an exponentiated interval of [25.0 ft 3/s, 195 ft 3/s]. Although the 

measured flow on October 1, 1988 of 131 ft 3/s is contained within this interval, the inter 

val is wide, and the correlation of residuals in time is highly positive (fig. 10).
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Figure 10. Correlogram of residuals of the selected ordinary least squares regression 
equation for estimating streamflow at Sturgeon River near Sidnaw.
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Stochastic Models

Two types of stochastic equations were developed by use of AUTO BOX as part of 
this analysis. Univariate processes were described by ARIMA equations, and bivariate - 
input-univariate output processes were described by TFN equations. Data from water 

years 1985 88 were used in identification and estimation stochastic models. Sample auto 

correlation and partial autocorrelation functions were computed up to lag 12 to aid in 

identification. All estimated parameters were statistically significant at the 5 percent 
level. Diagnostic checks for model sufficiency, parameter necessity, and invertibility were 
computed automatically for each tentatively identified model. Because of the large period 
of the seasonally of daily values, seasonally components were not included within the 

ARIMA or TFN models.

Autoregressive Integrated Moving-Average Models

Formulation

The general form of an ARIMA model used to describe the univariate processes is

a, , (8) 
*, *

where

z, refers to either the explanatory or the response series;
/iz is the mean of the univariate series;

V z is the backward difference operator on the univariate series (This operator causes 

lagged values of the univariate series to be subtracted from itself a specified num 

ber of times. The backward difference operator, V, equals (1 B°) where the 

order, o, corresponds to the lag used in the differencing and the degree, d, 

specifies the number of consecutive times that the differencing operator is applied. 
Differencing operators were applied as needed to create stationarity in the 
univariate series.);

M, is a deterministic trend;

is an autoregressive operator of order p associated with variate z, where
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QZ(B) is a moving-average operator of order q associated with variate z, where

Q(B) = 1 - 0 VB - 02#2   -   0qtfi ; and 
a, is a white-noise process associated with the ARIMA model of variate z. (This

process is generally assumed to be distributed as a JfI(Q, a*}. Values of a, are

computed as z,   z.J(l) t where z.Jl) is the lead  1 forecast of z, at time

origin t  1 based on the ARIMA equation.)

The lead-/ forecast is the estimate of streamflow Ways ahead of the most recent 

streamflow used as a response variable in the estimation. Forecasts, expressed as a 
weighted sum of of previous streamflows, can be computed readily from the model. The

lead / ARIMA forecasts, z.(l ), can be computed by letting

(simply replacing unknown 2's by forecasts) and replacing the unknown a, by zero (Box 
and Jenkins, 1976, p. 307).

For a series with ^=0, moving-average operator, 6Z(#); autoregressive operator 

; and differencing operator, V z ; equation 8 can be written

0Z-'(B) *i(B) z Vz = U(B) z = (10)

00

for II(B) = 1 + V TT . B?. The TT   weights are computed by equating coefficients in equa-
.7=1 

tion 10. The ARIMA lead / forecast is then computed recursively as

00

The estimated variance of the ARIMA lead / forecast error is
/-I

j. (12)

for

Probability limits associated with the ARIMA model forecast are a function of the fore
cast lead-/ and are computed as
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Implementation

ARIMA equations were developed by use of AUTOBOX and log-transformed 
streamflows obtained from the 50 selected gaging stations (table 3). First-order 
first  degree differencing operators were used in 72 percent of the equations. No other 

differencing operators were included. In equations without differencing operators, the 
mean was estimated and removed.

Integrated moving-average (IMA) equations were identified for 44 percent of the 
stations; autoregressive integrated (ARI) equations were developed for 28 percent of the 
stations; autoregressive (AR) equations accounted for 20 percent of the stations; the 
remaining 8 percent of the stations were described by autoregressive moving-average 

(ARMA) equations. The coefficient of determination associated with equations 

containing differencing operators was higher than that for equations lacking differencing 

operators (fig. 11). No significant deterministic trend components were identified. On 

the basis of criteria specified within AUTOBOX, the assumption of independence and 

normality of equation residuals (a, ) cannot be rejected.

Application

The univariate model developed from log-transformed streamflow at station 
04040500 includes one differencing operator and one moving-average operator. The 
differencing operator is of first order and first degree. The moving-average operator 

consists of one parameter with a value of -0.3897 associated with a backorder power of 1.

Computation of forecasts can be facilitated by converting the rational polynomial 
equation (by algebraic manipulation) to the regression form of equation 11 as

yt(t) « 1.390fy+M] -0.542[y^H] +0.211[»t+M] -0.0822fy+w] +0.0320[yt+M]. 

The lead  1 estimate of the log of streamflow for October 1, 1988, based on the IMA

model is 4.950. The corresponding exponentiated estimate, exp(j/,(l)), is 141.1 ft 3/s.

A 95  percent probability interval is obtained by computing coefficients 
V(B) = 1+ 1.3897B + 1.3897B2 + . . . and applying equation (12). The lead-1 

95-percent probability interval equals 4.949 ± 1.96 x 1 x 0.216 = [4.527, 5.372], which 

corresponds to an exponentiated interval of [94.6 ft 3/s, 215 ft 3/s]. This interval excludes 

the OLSR estimate, and it is 59 percent narrower than the corresponding regression 

interval; however, the estimated standard deviation of the forecast error and associated 

probability interval width increases sharply with the forecast lead. In this case, the 
standard deviation of the lead-4 forecast error exceeds the RMSE of the OLSR equation 
(fig. 12). TFN models, discussed subsequently, combine some of the desirable properties 

of ARIMA and OLSR estimators.
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Table 3. Autoreressive interated movin averae euations for estimatin daily
streamflow

[z, is log transformed daily streamflow; 5 is the backshift operator, Bmz, = z. ;
V is the backward

&e(l)

is the

Station

number

04033000

04040500

04043050

04045500

04056500

04057510

04059000

04059500

04061500

04096400

04096515

04096600

04096900

04101500

04102500

04105000

04105500

04109000

04111379

04111500

04113000

04114500

04115000

04116000

04117500

difference operator, z,V = z, z._.] a. is a white-noise series;

is the estimated standard deviation of the lead  1 forecast error; and 22
coefficient of

Equation

»e(D

0.1032

.2157

.2667

.0490

.0372

.1175

.1210

.1110

.1524

.0903

.1779

.1178

.0835

.1045

.0620

.1007

.1094

.1816

.1549

.3488

.2251

.1699

.1513

.1888

.0754

determination for the lead  1 forecast]

Equation

22 Autoregressive integrated moving  average equation

0.943 (1 -0.42965 +0.262652)ztV = at
.957 ztV = (1 +0.38975)at
.872 (1 -1.12735 +0.389552 -0.l94853)(zt-3.4564) = at

.995 (1 -0.95265 +0.329152 -0.099553)ztV = at

.996 (1 -1.02905 +0.392752 -0.079753)ztV = at

.969 (1 -0.49705 +0.243052)^ = at

.969 ztV = (1 +0.49065 +0.164652)at

.987 ztV = (1 +0.73175 +0.309852 +0.098453)at

.930 zj = (1 +0.10515 -0.039952)at

.987 zj = (1 +0.56205 +0.152752)at

.977 (1 -0.40465 +0.214452)^ = at

.985 2tV = (1 +0.57275 +0.094852) at

.984 (1 -0.85445 +0.352652)zfcV = at

.961 ztV = (1 +0.05525 -0.091652)at

.981 ztV = (1 +0.64935)at

.983 ztV = (1 +0.64805 +0.284952 +0.115353)at

.955 (1 -0.21125)ztV = at

.914 ztV = (1 -0.105652 -0.093053)at

.977 ztV = (1 +0.50745 +0.079052)at

.938 ZtV = (1 +0.21345 -0.224652 -0.0946253)at

.931 (1 -0.79045-0.225652 +0.0487154)(zt-£.4776) = at

.966 (1 -0.24585 +0.171852 -0.075453)^7 = at

.986 ztV = (1 +0.67525 +0.224852 +0.081353)at

.951 (1 -1.03105 +0.059853)(zt -7.4194) = at

.991 (1 -2.01175 +1.420352 -0.395353)(zt-5.6118) = at
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Table 3. Autoregressive integrated moving average equations for estimating daily

streamflow   Continued

Station 

number

04121300

04121500

04121900

04122100

04122200

04122500

04127800

04127918

04128000

04135500

04135700

04146000

04146063

04160570

04160600

04161100

04161540

04161580

04163400

04164000

04164100

04164500

04166000

04166100

04168000

Equation

0.0856

.0776

.1471

.2356

.0777

.0483

.1193

.1958

.0990

.0491

.0568

.1798

.1633

.3156

.2774

.4901

.2396

.2449

.5796

.3491

.2385

.2964

.4023

.4609

.6266

Equation 

22

0.973

.984

.931

.918

.967

.985

.522

.934

.827

.958

.979

.978

.967

.912

.945

.805

.882

.928

.765

.706

.915

.962

.703

.651

.772

Autoregressive integrated moving  average equation

ztV = (1 +0.6504B-0.1819B3)at

ztf = (1 +0.5994B +0.1441B2)at

(1 -0.4106B +0.2876B2 +0.0803£4)ztV = «t

ztf = (1 +0.0957B-0.2780£2_o.0982B3)at

ztV = (1 +0.6533B +0.2002B2 -0.0582£3)at

ZtV = (1 +0.8130B +0.4997B2 +0.1906£3)at

(1 -0.6536B-0.1295B4)(zt-5.2349) = ot

(1 -0.3029B+0.1704£2)ztV = at

(1 -1.0924B +0.4254B2 -0.2459B3)(zt-5.4289) = at

ztf = (1 +0.6732B-0.1450B3)at

ztf = (1 +0.4871B +0.08545B2)at

zfcV = (1 +0.4468B +0.1654B2 +0.0871B3)at

zjV = (1 +0.4393B-0.0463B3)at

ztV = (1 +0.1475B-0.1798B2-0.1351B3)at

(1 -0.4373B +0.2845B2)ztV = at

(1 -1.0085B +0.2756B2 -0.1680B3)(^ -3.2088) = at

(1 -0.9160B-0.0528B3)(^ -3.8090) = (1 -0.2681B2)at

(1 -0.1294B +0.1490B2)^tV = at

(1 -0.9576B+0.2666B2-0.1941B3)(zt-5.8942) = at

(1 -0.7991B-0.1143B4)(zt-5.8512) = (1 -0.1965B2)at

(1 -0.1009B+0.1827B2)ztV = at

(1 -0.5921B +0.3598B2)ztV = at

(1 -0.8436B-0.0685B4)(zt-2.9150) = (1 -0.2407B2)at

(1 -0.8007B-0.0878B4)(zt-3.9794) = (1 -0.2029B2)at

(1 -0.9940B +0.3339B2 -0.2285B3)(^t -4.2960) = at
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Figure 11. Box plots of coefficients of determination for autoregressive integrated 
moving average equations.
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Figure 12. Relation between errors of ordinary least squares regression, autoregressive 
moving average, transfer function noise, and composite estimates and the 
length of the interval of estimation for log transformed streamflows from 
Sturgeon River near Sidnaw.
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Transfer-Function-Noise Model

Formulation
The general form of a TFN model can be written as a rational polynomial in B as

where
y, is the value of the response series at time t\
pj is the mean of the explanatory series;
V y is the differencing operator on the explanatory series;
M, is the deterministic trend;

$(B) is the autoregressive operator of order p on the white-noise series;
Q(B) is a moving-average operator of order q on the white-noise series;

a, is the value of the white-noise series at time t (Values of a, are computed as

y.   y* i(l)i where 3//i(l) is the lead  1 forecast of y, at time origin t  1

based on the TFN equation; a. ~ Jtf(0,<72 ).);c a
8(B) is the denominator operator of order r on the explanatory series;
$l(B) is the numerator operator of the explanatory series (ti(B) is the product of the

operator u(B) of order 5 and pure delay factor B . The pure delay describes
the time interval in days between the explanatory input and the streamflow
response.);

x, is the value of the explanatory series at time t] 
//x is the mean of the explanatory series; and 
V x is the differencing operator on the explanatory series.

As in the ARIMA model with no trend component, the lead / forecast from time 
origin t can be computed recursively (Box and Jenkins, 1976, p. 407) as

where the weights P and Q can be obtained by equating coefficients in the expressions

e(B) (16)

where $(B) = *(B)Vy ,

28



CD

(17)

and, because x, is assumed to be known throughout the period of estimated record at the 
response station,

The variance of the lead  I forecast error (Box and Jenkins, 1976, p. 405) is
l-l l-l

j=b 

where a 2 is the variance of the white-noise component of the explanatory series filtered

by an ARIMA model and $x(B)x, = 0x(B)a,, a\ is the variance of the white-noisez L a
series from the TFN model. The v weights and # weights can be obtained explicitly by 
equating coefficients in

(20) 
and

<KB)*(B) = 6(5) (21)
(Box and Jenkins, 1976, p. 405). Because x. is assumed to be known, equation 19 can 
be written simply as

^.. (22) 

>=0

Probability limits associated with the TFN model forecast are a function of the forecast 
lead-/ and are computed as

yt(l)^Jftt/2 cre(l). (23)

Implementation
TFN models were identified and estimated from streamflows from the selected 25 

station pairs. Forward shifting of the explanatory series was simulated by specifying the 
first observation of the explanatory series 4 days ahead of the first observation of the 
response series. The forward shift was needed in some cases to make full use of the 
cross  correlation between the explanatory and response series in cases where the two 
series were contemporaneous or where the explanatory series lagged behind the response 
series.
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The TFN models developed for the log transformed streamflow data (table 4) 
included, at most, one autoregressive operator (68 percent), one numerator operator (100 
percent), one denominator operator (36 percent), and one or more moving-average 
operators (68 percent). The maximum number of moving-average operators in a single 
equation was five. In 84 percent of the equations, the response series received first order 
first degree differencing. The explanatory series was differenced in all the equations in 
which the response series was differenced and in three additional equations. The 
explanatory series also received first order first degree differencing except for one station 
that received first-order second degree differencing. The mean was estimated and 
removed from all series not containing a differencing operator. The pure delay for the 
forward-shifted explanatory series varies from 0 to 4 days. No deterministic trend 
components were required. On the basis of criteria specified within AUTOBOX, the 
assumption of independence and normality of equation residuals (a,) was not rejected.

Application
The TFN model developed to estimate the log of streamflow at station 04040500 

based on the log of streamflow at station 04043050 includes a first-order and first-degree 
differencing operator on the response series. The noise series includes one autoregressive 
operator with two parameters. Parameters are associated with backorder powers of 1 and 
2 and are estimated as 0.1943 and -0.1213, respectively. The explanatory series, which 
is assumed to be is stationary about an explicitly included mean of 3.4566, includes one 
numerator operator. The numerator operator contains five parameters 0.4808, 0.2267, 
0.1448, 0.5884, and 0.0530 associated with backorder powers of 0, 1, 2, 3, and 7, 
respectively. The pure delay of the shifted explanatory series, &, is 4. On the basis of a

one step ahead forecast, L(l), the IP value of the equation is 0.975, and the estimated

standard deviation of lead 1 forecast errors, ^(1), is 0.166.
The TFN forecast for October 1, 1988, is obtained by use of equation 16,

CD

P   B 3 = 1 - (1 - 0.1943B + 0.1213B2)(1-B)

to compute the P. coefficients (Pi = 1.194, P2 = -0.3156, and P3 = 0.1213, and by use 
of equation 17,

QfP= (1 -0.194B +0.121B*)(1-B)(0.481 -0.227B-0.145B2 -0.0588B3 -0.0530B7)B4 
j=0
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to compute the Q. coefficients (Q4 = 0.481, Q5 = -0.320, Q6 = -0.042, Q7 = -0.058, Q8 
= -0.006, Q9 = -0.007, Qn = -0.053, Qn = 0.010, Q 13 = -0.006, and Q.= 0 otherwise). 
Then, from equation 15, the estimate of the log of streamflow on October 1, 1988, is 
4.9547. The exponentiated estimate is 142 ft 3 /s.

The estimated variance of the lead / forecast is computed from the TFN equation 

developed for station 04040500 by equating the $   in equation 21 as

00

= [(I -0.19435 + 0.1213fl2)(i_fl)]-i

such that Vo = 1, Vi = 1-194, ^2 = 1.111, V's = 1-071, ^4 = 1-073, Vj « 1-079 for

je{5,6,...}. Then, from equation 23, the 95 percent probability interval about y,(l) 

equals [4.628, 5.281]; this corresponds to an exponentiated interval of [102 ft 3/s, 197 
ft 3/s]. This interval excludes the OLSR estimate but includes the lead 1 ARIMA 

forecast. The width of the TFN lead 1 interval is 68 percent smaller than the 
corresponding width of the OLSR estimate and 23 percent smaller than the interval width 
based on the lead 1 ARIMA forecast; however, the estimated standard deviation of the 
forecast error and the associated probability^nterval width increase as forecast lead 

increases. In this case, the standard deviation of the lead 9 forecast error exceeds the 

RMSE of the OLSR equation (fig. 12). A composite model, discussed in the following 
sections, combines ARIMA and TFN models to produce an improved estimator.

Composite Model

Two stochastic models, an ARIMA model of the response series and a bivariate  

input univariate-output TFN model, were developed to estimate streamflow at time t+L 

In the TFN model, the standard deviation of forecast errors is reduced by use of an 

explanatory series in addition to measured values of the response before the beginning of 
period of estimated record; however, the TFN estimate can be improved by use of 
streamflow measured at the response site after the period of estimated record.

An ARIMA model of the reverse ordered series serves as a second model to fore 

cast streamflow during the period of estimated record. Forecasting the reverse-ordered 

time-series values will be referred to as backcasting. If the response series is reversible, in 

the sense that the distribution of (yi,y2>---»I/h)' is the same as that of (l/h>]fa-i) lift)' > *nen 

no additional stochastic modeling is required because the ARIMA model developed during 
TFN model development of the time-ordered series is applicable to the reverse-ordered 
streamflow data.
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An unbiased composite estimate, based on a weighted sum of the TFN forecast 
and the ARIMA backcast, ensures a gradual transition of streamflows between periods of 
measured and estimated flow. In addition, the errors associated with the composite 
estimate are likely to be smaller than those in either of the individual models if the 
weights are chosen appropriately. A method for choosing the weights to minimize the 
variance of the composite estimate is discussed in the following section.

Formulation

The composite estimate of streamflow at M, y,(l )   based on a TFN forecast at 

time t, y,(l ) and an ARIMA backcast to t+l from t+k+1, 3//j_jkj_i(^~k~l)> where k
is the length of the interval of estimated record and 1 < I < k   can be written as

s /' ) = v ) Hl > + "uc*-*-1 ) %*+i(/-M   (24)
Bias in the composite estimates was avoided by constraining the sum of the weights 
tiy(J)and wJl-k-l) to equal 1. In addition, wM) and wJl-k-1) were assumed to 
be nonnegative. Because wM ) + wJl-k-i) = 1, equation 24 can be written

(«t - m )) = «yO ) (yt - m )) + w^J-*-!) (yt - yt+k+1(i-k-i)) . (25)
On the basis of the variance of equation 25, the variance of the length / composite error, 

(7e(0> can be written as

Var(jft - yt(l )) = w*(l ) Var(^ - yt(l )) + w%l-h-l) Varty - 2/^H1(/-^l)) (26) 

under the assumption that the covariance between the model errors, 

^+A.+1(^-^1)), (yt - yt(l ))J , equals zero.

The prediction variance in equation 26 is minimized with respect to wM ) and 
, subject to the above constraints, when

w (l ) =              (27)
7 °l(l )+ al(l-k-l) 

and

(28)
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If variances are replaced with sample estimates and terms are rearranged, equation 24 can 
be expressed as

m)=         , (29)
 *  i __*__

where it is apparent that the composite estimate, fk(0, *s obtained by weighting the TFN 
forecast and ARJMA backcast inversely proportional to their respective error variances. 
Similarly, equation 26 can be expressed as

(30)

Implementation
ARJMA equations, developed from the reverse-ordered streamflows, were virtually 

identical to the equations developed from the time-ordered streamflows. Length  1 
composite estimates were computed from the 4 years of calibration data for the 25 
selected station pairs. Empirical results indicate that the composite estimates are

unbiased, S(y,.- y,(l))/ (4 x 365) ~ 0, for i = 1 to 25 of the selected stations. In 

addition, the empirical standard deviations of length-1 estimation errors, 0e,{l) =

J£(y.'-y,-(l) 2)/(4x365), average 24.4 percent lower than standard deviations of the 

lead-1 TFN forecast errors, Oe(l).

Use of al(l ) as an estimator of the true error variance is based on the assumption 
of independence between TFN forecast errors and ARIMA backcast errors. This 
assumption was investigated by examining the linear correlation between model errors. 
Results based on the 25 selected station pairs indicate that, although the distribution of 
correlation coefficients was roughly symmetrical about zero (fig. 13), most of the 
individual sample correlation coefficients were significantly different from zero at the 
5 percent level.

The effect of this correlation on the estimated standard deviation of the composite 
error is shown in figure 14. If the model errors were negatively correlated, the empirical

A

standard deviation, <Je(l), was less than the estimate based on independence, 0"e(l). In
A

contrast, if the correlation was positive, ae(l) was less than ae(.l). Thus, although
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Figure 14. Relation between estimates of the standard deviation of length 1 composite 
errors based on empirical analysis and estimates based on the assumption of 
independence between transfer function noise-forecast and autoregressive 
integrated moving average-backcast errors.
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0"e(l) is apparently an unbiased estimator of the true standard error 3 cre(l) is likely to 
differ somewhat from the true standard error. Detailed analysis of the model-error 
correlation structure is needed if precise estimates of standard deviation of composite 
errors are required.

Application
The potential improvement associated with the composite estimator is illustrated 

by means of a hypothetical 21-day interval of estimated record beginning on October 1, 
1988, at station 04040500 (fig. 15). The explanatory series, based on streamflow records 
from station 04043050, includes two small peaks, one on October 6 and a second on 
October 19. The streamflow response associated with these peaks seems inconsistent. 
During the October 6 peak, the relative increase in streamflow at the response site is 
greater than the relative increase at the explanatory site; during the October 19 peak, the 
relative increase in streamflow at the explanatory site is large but the relative increase at 
the response site is small. This inconsistency may be attributed to the differences in the 
distribution of rainfall over the two basins.

The exponentiated TFN forecasts, which alternately underestimate and 
overestimate the measured streamflow response for these two peaks, indicate that the 
response was alternately greater and smaller than expected on the basis of average 
response during the calibration period. Although the TFN forecasts result in a smooth 
transition between measured flow on September 30 and estimated flow October 1, the 
transition from estimated to measured flow between October 21 and October 22 is abrupt. 
In contrast, the exponentiated ARIMA backcasts are consistent with flow on October 22 
but not with measured flow on September 30. The exponentiated composite estimate 
matches the TFN forecasts near the beginning of the interval and approaches the ARJMA 
backcasts near the end of the estimated interval. In contrast, the exponentiated OLSR 
estimates differ sharply from measured streamflow anytime within the first 16 days of the 
interval. Within this 21 day interval, the exponentiated composite estimates appear 
unbiased, whereas the exponentiated OLSR estimates tend to underestimate measured 
streamflow.

3Results of a Wilcoxon rank-sum test (Conover, 1980, p. 280) failed to reject H0 : 

0-e(l) = 0 at the 5 percent level of significance)
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Figure 15. Measured and estimated streamflow of Sturgeon River near Sidnaw from 
September 15 through October 31, 1988.

COMPARISON OF MODEL BUILDING ALTERNATIVES

The following sections discuss the variation in accuracy of streamflow estimation 
(1) between alternative data-transformations, (2) between models developed with and 
without removal of seasonal components, and (3) among alternative statistical models.
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Data Transformations

Two sets of OLSR equations were developed from log- and avas-transformed 

streamflow data. The two sets contained similar numbers of parameters; the equations 
based on log-transformed streamflow data contained an average of 5.3 parameters, 
whereas equations based on the avas-transformed streamflow data contained an average of 
4.9 parameters. The average coefficient of determination, "X 2 , of the equations based on 
the log transformation (0.84) differed slightly from the average ^2 of the equations based 
on the avas transformation (0.85); however, the residuals of the equations based on the 

avas transformation were more likely to have a constant variance than were residuals 
from equations based on the log transformation (fig. 16).

-1

I'
tf

-1

-2

LOG-TRANSFORMED STREAMFLOW
I \ 

-VARIABLE-SPAN MOVING 
AVERAGE

AVAS-TRANSFORMED STREAMFLOW

-2 -1.5 -1 -.5 0 .5 1 1.5 2.0 2.5 3.0 3.5

ESTIMATE

Figure 16. Variation of residuals with estimates based on ordinary least squares
regression equations developed from log- and avas-transformed streamflow 
values from Sturgeon River near Sidnaw.
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The bias and the precision of the estimates also were compared to assess the ade 
quacy of the log transformation commonly applied in the analysis of streamflow data. A 
common metric for comparison for the log and the avas estimates was provided by 
inversely transforming both estimates to cubic feet per second and subtracting them from 
measured streamflows included within the verification period as

 lt = #~

where  ,* are the residuals based on equations developed from log-transformed data and 
e , are the residuals based on avas-transformed data. Inverse transformations of the log 
and avas functions were obtained, respectively, by exponentiation and by linear 

interpolation between tabled values based on the calibration data.

Analysis of the residual statistics showed no significant difference at the 5  percent 

level between the mean or standard deviation of residuals derived from the log-transfor 
mation-based OLSR equations and those derived from the avas-transformation-based 
OLSR equations. Therefore, although the avas transformation improved the error distri 
bution somewhat, the accuracy of estimation differed little between equations sets. For 
simplicity of analysis and for consistency with other investigations, the log transformation 

was not rejected in favor of the avas transformation.

Trend and Seasonal Components

The potential for improving the accuracy of the estimating equations by including 
explicit trend and seasonal components was investigated. No significant linear-trend 

components were identified during ARIMA or TFN model development. No other trend 

components were evident from inspection of time  series plots of residuals.

Seasonal components were estimated by use of the VSMA vectors and the log- 
transformed streamflow data within the calibration period. The VSMA vectors were 

subtracted from the log-transformed calibration data to form deseasonalized series. OLSR 
models and TFN models were developed from the deseasonalized data. Seasonalized 
estimates for the verification period were formed by adding the deseasonalized estimates 

from the estimating equations and the seasonal component estimated by use of the VSMA 
vector.

OLSR equations based on deseasonalized flow data (OLSR' equations) contained 
an average of 5.0 parameters, whereas OLSR equations based on data without 
deseasonalization contained an average of 5.3 parameters; however, the I2 of the OLSR'
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equations averaged only 0.74, about 0.10 units below the average for OLSR equations. 
The I2 of lead-1 forecasts with flow based on TFN' equations (deseasonalized flow data) 
was 0.94, about 0.03 units below the I2 for the TFN equations. The bias and precision of 

estimates that were reseasonalized and transformed back to cubic feet per second were not 
significantly different (at the 5 percent level) than bias and precision of estimates compu 

ted from deseasonalized data. The results indicate that inclusion of seasonal components 
is unlikely to substantially improve either the OLSR estimates or lag-1 forecasts based on 
stochastic models; however, deseasonalization results in time series that satisfy the 

stationarity assumption associated with the statistical models and may improve forecasts 
at longer lead times than those investigated in this analysis.

Statistical Models

OLSR models and stochastic models were used to describe daily streamflows for 25 
gaging-station pairs in Michigan. Important differences were found between the 
consistency of model assumptions with data characteristics, the accuracy of estimation, 
and the ease of model development and use.

Both models are based on the assumption that the errors are uncorrelated. This 

assumption was satisfied in the stochastic models. In contrast, the OLSR residuals were 

positively autocorrelated for all stations. The autocorrelation indicates that the variance 
of the OLSR errors should be represented as an 7i-dimensional matrix rather than as a 
scalar. This violation of a basic assumption of OLSR models creates uncertainty as to the 

applicability of the OLSR equations to estimation of daily streamflows. TLe limitations 
of the OLSR equations were most apparent in the estimation of short intervals of daily 

streamflow.
The standard deviation of errors of the stochastic models increased monotonically 

with increased length of the interval of estimation (fig. 12). In contrast, the standard

deviation of the OLSR errors varies with the distance between x,, i   x; however, 
because of the large number of measurements used in the estimation, the standard 
deviation of the OLSR errors was approximated as a constant equal to its root mean

square error (cre). On the basis of this approximation, 60 percent of the (7e(2) in the 

ARIMA equations were less than or equal to cre; however, only 20 percent of £e(4) were 

less than or equal to ae. In comparison, 60 percent of the ae(9) in the TFN equations 

were less than or equal to ae and 12 percent of the 3"e(14) were less than or equal to ae .
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The mean standard deviation of the length / estimation errors is a basis for 
comparing the accuracy of the OLSR and the composite estimators. The estimated mean 
standard deviation of the length / composite error is computed as

1
On this basis, the stochastic equations provide the more accurate estimates of daily

streamflow for short durations of estimated record. Specifically, ~a^(l ) < (re at all 
stations for I < 10 days, at 92 percent of the stations for I < 21 days, and at 52 percent of 
the stations for I < 32 days (fig. 12).

The mean error ratio is a basis for assessing the potential reduction in streamflow 
estimation error by use of the composite estimate rather than the OLSR estimate. The 
mean error ratio was computed as

- (34)
0Ve l 

for the Tis = 25 selected response stations. The results indicate that ra(l ) < 1.0 for I <

32 days (fig. 17). By weighting re(l ) by the frequency of length  I intervals of 
estimated record, £(/), for /=1,2,...30, an estimate of the effective mean error ratio,

f a , is obtained. The value of ra indicates the potential for reducing estimation errors 
by use of the composite estimate instead of the OLSR estimate for periods of estimated

record not exceeding 1 month. The estimate of ra = 0.52 was computed as

(35)= [I

I It

Because the estimated ratio is much less than 1, use of the composite estimate is likely to 
substantially reduce the errors of streamflow estimation in Michigan compared to the 
OLSR estimate.

Finally, both OLSR equations and stochastic equations were developed by means 
of commercially available computer software. Development of OLSR equations required 
the specification of arbitrary criteria (an increase of 0.001 in 72 value for the addition of a 
model parameter) to avoid an excessive number of parameters that may have occurred if 
model identification had been based on the computed significance level of parameters.
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Figure 17. Relation between the mean error ratio and the length of the interval of 
estimation.

The computed significance level of OLSR parameters were overestimated because the 
streamflow residuals were positively correlated. Stochastic model development by means 
of AUTOBOX was completely automatic once the time series, modeling options, and 
minimum significance of parameters was specified.

The regression form is convenient for estimating streamflow values. Stochastic 
equations can be converted to a regression form through algebraic manipulation. An 
option in AUTOBOX provides this converted output or the forecast values directly. 
Although the OLSR equations are developed in the regression form, the estimates may 
not be useable because they tend to be inconsistent with streamflows before and after the 
period of estimated record.
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SUMMARY

Daily streamflows from October 1, 1984 through September 30, 1989 were analyzed 
for 25 pairs of gaging stations in Michigan. Stations were paired by randomly choosing a 
station operated in 1989 at which 10 or more years of continuous record were available 
and at which flow is virtually unregulated and then selecting a nearby station where flow 

characteristics are similar. Streamflow data from each of the 25 randomly selected 

stations were used as the dependent or response variable; streamflow data at the nearby 

stations were used to generate a set of independent or explanatory variables.
About 15 percent of the daily values during this period were estimated because of 

either missing record (often resulting from equipment failure) or variable backwater 
(often related to channel ice formation). The durations of periods of estimated record 

averaged 14 days, although about 65 percent were less than or equal to 7 days. Estimates 
are computed to complete daily streamflow records obtained by the U.S. Geological 
Survey at most of the 140 stations operated in Michigan.

Daily streamflow estimates can be obtained by use of statistical models. Because 
of the asymmetrical distribution of streamflow data, nonlinear data transformations are 
commonly applied to facilitate model development. In this analysis, two nonlinear data 

transformations were investigated, the natural logarithm (log) and the additive variance 
stabilizing (avas) transformations. In addition, the need for explicit trend and seasonal 
components in the statistical models also was studied.

Ordinary least squares regression (OLSR) is a commonly used statistical model 

for estimating a response variable based on one or more explanatory variables. The 

OLSR model is based on the assumption that the model errors are independent and 

normally distributed with a mean of zero and a constant variance. OLSR equations were 

developed for estimating the streamflow response at time t based on streamflow at the 

explanatory station at time t+4, t+3,...,t 7. Subsets of the explanatory variables were 
selected on the basis of a statistic (Cp) that reflects parsimony in a selected model. 
Final OLSR model-selection criteria included a minimum computed significance of 5 
percent for all explanatory variables and a minimum increase in the coefficient of deter 

mination (22) of 0.001 for each added parameter.

Stochastic models were developed to describe dynamic univariate processes 

(ARIMA models) and bivariate input univariate-output processes (TFN models). The 

stochastic models were developed using AUTOBOX, a computer based expert system 

program (Automatic Forecasting Systems, 1988). A composite estimator was developed 
from the forecast computed by the TFN equation and a backcast (a forecast of the
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reverse-ordered response series following the end of the period of estimated record) 
computed by the ARIMA equation.

OLSR analysis of log- and avas-transformed streamflow data indicate that, 
although the avas transformation tends to improve the distribution of the transformed 
residuals, the streamflow estimates are not significantly improved. Therefore, the widely 

used log transformation was considered adequate to develop the streamflow models. No 

trends were detected in the streamflow series, and the removal of seasonal components did 
not significantly improve the accuracy of OLSR- or stochastic-model estimates examined.

Residuals from the OLSR models of daily streamflow were characterized by 

consistently positive correlations which violates the assumption of independence 
associated with the OLSR model. OLSR estimates of streamflow were commonly 
inconsistent with measured values of streamflow at the response station immediately 

before and after the period of estimated record. Neither the ARIMA nor the TFN model 
residuals were autocorrelated; furthermore, their distributions were virtually normal. The 

standard deviations of the forecast errors were generally lower than the OLSR estimates 

at small forecast leads; however, the forecast errors increased monotonically with the 

forecast lead and generally exceeded the OLSR estimates by lead 12.
A composite estimate, formed by weighting the TFN forecast with the ARIMA 

backcast in inverse proportion to their respective error variances, decreased the average 
standard deviation of the estimate errors and ensured a smooth transition between periods 

of measured and estimated streamflow. The average standard deviation of the errors of 
the combined estimate was generally less than the OLSR estimate for intervals less than 

or equal to 32 days.
The mean error ratio indicates the potential reduction in streamflow estimation 

error if the composite estimate rather than the OLSR estimate is used. The mean error 

ratio for the 25 selected response stations was less than 1 for lengths of estimated record 

less than or equal to 32 days. Weighting the mean error ratio by the frequency of 

length / intervals of estimated record provides an estimate of the effective mean error 
ratio. Because the estimated value of the effective mean error ratio of 0.52 is much less 
than 1, use of the composite estimate rather than the OLSR estimate could substantially 

reduce streamflow-estimation errors in Michigan.
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DEFINITIONS OF TERMS

Autocorrelation. The correlation between elements of a series of observations or
measurements ordered in time. The collection of autocorrelation coefficients for 
two or more lags of a series is called the autocorrelation function.

Coefficient of determination. The square of the product moment correlation coefficient.

Cubic feet per second. A unit expressing rate of discharge. One cubic foot per second is 

equal to the discharge of a stream 1 foot wide and 1 foot deep flowing at an 

average velocity of 1 foot per second.
Degrees of freedom. A number based on the difference between the sample size and the 

number of parameters in the model.
Discharge. The volume of water (or more broadly, volume of fluid plus suspended 

sediment) that passes a given point within a given period of time.

Expected value. The mean of a random variable.
Fourier series. A set of sine and cosine functions capable of approximating a 

variety of mathematical functions.
? value. The probability of obtaining a value of a statistic as unusual as that observed.

Polynomial trend. A trend of the general form
y = a0 + arf + a2 £2 -I- as*3 +     + Mn . 

Low order implies that the highest exponent of t will be 3 or less.

Prewhitening. A filtering procedure that reduces autocorrelation.
Root mean square error. The square root of the second moment of a set of differences 

between measured values and model estimates. Equal to the square root of the 

mean-square error.
Stationary. As used in this report, a stochastic process is stationary in the covariance

if the covariance function Cov(fc) = £[x(£) x(£+ k)] exists and is independent of t 

for all integer values of k.

Stochastic model. A model in which estimates are based on their probability of

occurrence rather than on physical laws. In this report, stochastic models refer to 
statistical models that are appropriate for describing dynamic systems.

Streamflow. The discharge that occurs in a surface stream channel.
Variance. The variance is the average value of the squared deviation of a variate from its 

mean.

Water year. In U.S. Geological Survey reports, the water year is the 12 month period
from October 1 through September 30. The water year is designated by the calen 
dar year in which the water year ends; thus, the water year ending September 30, 

1988, is called "water year 1988."
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